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Abstract

This paper addresses the formulation of hierarchical plate models as an op-
timal (in a clearly defined sense) numerical method which can be easily imple-
mented and is available in the code MSC/PROBE. Special emphasis is placed on
the optimal selection of the shear correction factors. It is shown that different
measures of accuracy lead to different optimal choices of these factors. The main
tool in the analysis is the Fourier transformation.

1. Introduction

The problem of plate modelling is a classical problem of mechanics. The principles
underlying the derivation of plate models can be divided into 3 broad groups.

a) Physical derivation. Here assumptions of a geometrical nature are made a priori
in conjunction with additional assumptions involving certain stress components.
A typical example is the Kirchhoff hypothesis [26] which leads to the well known
biharmonic equation for the normal deflection of the plate. This approach has
been generalized in many papers and we refer here especially to [1, 2, 10, 17, 23.
24, 25, 30, 31, 34, 35, 37, 39, 40, 41, 44, 46, 49] and the references therein. The
idea of a shear correction factor was first introduced in the papers of this group.

b) Asymptotic Analysis. Here plate models are justified as the leading terms of an
asymptotic expansion of the three-dimensional solution with respect to the plate-
thickness. We refer here for example to [19], [20] and to [34],pp. 585-588, where a
historical account for this approach is given. Here the asymptotic methods were
mostly applied to the plate problem formulated as a differential equation rather
than to its variational form. Asymptotic methods, where a mixed variational
principle was used, appeared only recently [11]. See also [7], [33] for related ideas.

c) Numerical and Hierarchical Approach. Here we understand the modelling as ap-
proximate solution of the three dimensional problem (which is solved for example
by the finite element method). It is essential to use an approach which can be
easily implemented ( and which avoids in particular higher order equations) in the
framework of the h-p version of the finite element method and which has optimal
properties yielding the most accurate results when compared with the exact solu-
tion of the three dimensional problem. It has to be emphasized that various plate
models can significantly differ in the area where boundary layers and singularities
dominate the solution behaviour. Hence a flexible hierarchy is essential (and has
been implemented in the code MSC/PROBE). A posteriori error estimators and
adaptive approaches for the model selection within the hierarchy are yet to be
developed.



2

In this paper we concentrate on the selection of the shear correction factor which
leads to the highest accuracy of the solution. We restrict ourselves to the case of an
infinite plate made of a homogeneous, isotropic material and use the Fourier transform
technique in our analysis. The problem of anisotropic and laminated plates will be
discussed elsewhere. In the second section we define the three dimensional problem
and the hierarchy of the models. The third section addresses the Fourier transform
of the solution for the three dimensional formulation as well as for the plate model
problem. In section four we analyze the errors of various models and give the optimal
shear factors. In section five we present numerical examples and in section six we sum
up our basic conclusions.

2. Hierarchical Plate Models

2.1. The Plate Problem

The plate problem is the boundary value problem of three dimensional, linear elasticity
for an isotropic material on the domain

= {x = (XI,X 2,X3 ) I (Xl,X 2) E W,lX3l < d} =w x (-d,d) (2.1)

where w C R2 is a bounded domain with a piecewise smooth boundary. Here W is
referred to as the midsurface and 2d as the thickness of the plate.

As usually, we denote by u = {ui}, i = 1,2,3 the displacement vector. By o =

{orij}, ij = 1,2,3 and e = {e }, i,j = 1,2,3 wo denote the stress and strain tensor,

respectively, with ei, = 1 kLzr + h-'), i~j = 1,2,3. Hooke's law relating the stress

and strain can then be written in the form

"aii A+21 A A 0 0 0 el 1
22 A A+2y A 0 0 0 e22

33 = A A A+2u 0 0 0 e3 (2.2)

a12 0 0 0 y 0 0 2e1 (2
a13 0 0 0 0 U 0 2el3

L 1723 0 0 0 0 0 p 2e23

or
= Ae, A = {aii}, ai, = aii, i,j 1,...,6. (2.3) E

Here A is the material matrix, A, y are the Lam6 constants, and

yE
A (2 -" a 12  a a 13  a23  Fy

(I + v)(1 -2v) ~Distribut4anj
AvALlability Codes

Avail amndoP

Dist SpeoAL



A +(1 - 3)

(I + z/)(1 - 2v)
E = GlG a44 = a5.5= a66, (2.A)-2(1 + v,) G" 4 25"-

and aj=0,4<i<6, j=1,...6, j54i.

Here E is Young's modulus and v is the Poisson ratio.
We will focus on the classical plate bending problem where the normal tractions aro,

prescribed on the upper and lower plate surface. For (XI, X2) E w we have

O33 (xI,x 2, ±d) = +1q(xI,,) (2.)

o',3(xi,x2, ±d) = 0, a = 1,2

where q(x,X2) E L 2(w). The solution u is the minimizer of the total plate energy
Gp (u)1 4

A (U) = 'A(U) - L q(x)(u 3(x 1 , 2 ,d) + u 3(X,X 2 , -d))dxidX2, (2.6

where
E() = f eTAedx = I1U112

is the strain energy, over a suitable space 7-(SP) C (HI (Sp)) 3 where "H(fP) characterizes
the boundary conditions on the lateral plate sides and H1 (Q) denotes the usual Sobolmx
space.

By

P  {u I u = (ai,a 2, a3 ) + (b,,b2, b3 ) x (xI,X 2, X3), aj,b E R i = 1,2,3} (2.7)

we denote the set of rigid body motions. Now, if A/(np) = A/"P n "R(Qp) = 0 aiiml
q E L2 (w), the quadratic functional GA(u) has a unique minimizer. This follows f'om
Korn's inequality (for an elementary proof of which we refer to [27]) and the standardl
use of the Lax-Milgram lemma.

It is obvious that due to the symmetry of the problem, we can constrain the spaC(-,
of solutions to be of the form

U1 (X, X2, X3) = -U1 (XI, X2 , -X 3 )
u2(X,, X2, X3) = -U 2(XI, X2, -X 3 ) (2.,)
U3(x, X2 , X3 ) = U3 (XI,X 2, - 3 ).

Relation (2.8) constraints the space H(fQP) accordingly and will be assumed everywhere
in what follows. In the case that A P n R(flP) = A/7 (n,) # 0 we have to assume '1
addition that

(O, , q).R'dx 0 VTE.(Op
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then the minimizer of (2.6) exists and is unique modulo A(QP)

For w = R2 and £P := w x (-d, d) the situation is slightly more complicated. III
this case we will assume that q(xl,X2) E L 2(R 2), has compact support and satisfies
(2.9) for any 1Z E AP'. Then the quadratic functional g' has a minimizer over 7"(P.P)
where

E i= =1,2,3 eAedx < oc}. (2.10)"H( ) = ui EH, o~fo), i= 1, , .

The space 1-(fl) is not a subspace of (H 1 (f2P)) 3 because the displacement components
u i E K(fP ) are in general not square integrable. For more about the analysis of the
characteristics of spaces of the type 7"(4?) and related questions we refer to [27]. The
minimizer of Gp is unique modulo functions in A/P and once more we will constrain the
space 7-H(f) by (2.8).

We will also address the a = (a,, a 2 )-periodic plate problem on

S = w,, x (-d,d), w, = (0 < xi < ai,i = 1,2).

Here we will consider spaces of a-periodic functions in (xl, x 2) with periods ai in xj, . 2.

A function ¢(XI, X2, x3) is called a-periodic if 0(X1 + mal, X2 + na2 , X3 ) = x(l, X2, X3 )
for arbitrary integers m, n. We define

lp(a) = {ui E (H.(QP)), i = 1,2,31 (2.11)

where H,(fDP) is the space of a-periodic functions in (xl, x2) and analogously we also
define L2,,a(w,,). The minimizer of 9' (u) is now defined by (2.6) with the integration
taken over S and w0 , respectively. The solution of the a-periodic plate problem is the
minimizer of 9'A,(w) over 7-(a). This minimizer exists if the q satisfies (2.9) (where
the integral is now taken over w.) for all 1? Ef sPf 7"H(a) = N and is unique modulo
.K'g. Once more the constraint (2.8) will be assumed here.

Together with the plate problem we will also consider its 2-dimensional counterpart
which we will refer to as the beam problem. Its formulation can be obtained formally

from that of the plate problem by the assumptions

q(x,x 2) = q(xi)

aui =0, i=1,3.
ax2

In this case we have

11 = IX = (xI,x 3 ) I lxlI < L, Ix 31 < d} = w x (-d,d) (2.12)
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where w = I = (-L,L). The displacement vector is now u = (ul, a = {aUU ij}

e = {e,}, i,j = 1,3 and Hooke's law is given by

[l 1 A + 2i A 0 e
a'22  = A +2p 0 = el (2.13)
a'33 0 0 y 2e13

or

a = Ae. (2.14)

As before, for q E L2(I), u is the minimizer of the quadratic functional

gA(u) AU - 1f q(xl)(U3 (xl, d) + u 3(xl,-d))dxl (2.15)

where 4A(u) = fob eTAedx = I[uII over a suitable space 7"H(flb) C (H1(fIb)) 2 satisfying
the constraint (2.8) for ul, U3 which characterizes the boundary conditions on the lateral
sides. We denote as before by

Nfb = {U(XI,X 2) I u = (aa 3 ) + b(X3,-XI), a,b E Ri = 1,3} (2.16)

the set of rigid body motions. Then if b = Ab n -n the solution exists
and is unique. Otherwise we have to assume that

(O,q).~Tdx = 0 VT.EA'(nb). (2.17)

In this case the minimizer exists and is unique modulo A -zb).

If w = R1 and Q = R1 x (-d, d) then we assume that q(x1) E L 2(R) has compact
support and satisfies (2.17) for any R E APb . The minimizer of g A over

00) = {u, E (HQb,(fT2)), i = 1,31 e T Aedx <oo (2.1S)
00

exists and is unique modulo N b as for the plate problem. We note that 7(Q') is not
a subspace of (H1 (fl6 )) 2 because ui, i = 1, 3 do not have to be square integrable on .

Quite analogously as above we define the a-periodic beam problem. Here we set

Q' = w.x(-d, d), w., = (0 < x, < a)

and will consider the space of a periodic functions (in xl) on flb. We define as before

1"ib(a) = {ui E H,.(fl), i = 1,3} (2.19)

where H,,(fil) is the space of a-periodic functions in x, with the condition (2.8). Analo-
gously we define L2 ,a(W,). The functional 9' (u) is defined by (2.15) where the integrals
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are now taken over fl' and w,, respectively. Then the solution of the a-periodic beam
problem is the minimizer of g'(u) over i"1 b(a). This minimizer exists if q satisfies
(2.17) (where the integral is to be taken over w,) for all 1?. E Xp nf 7-b(a) = X/, and it
is unique modulo A.

Here and in what follows, we are using the super- and subscripts p and b to underline
that we have in mind the plate or beam problem, respectively. If no ambiguity could
occur, however, we shall simply omit these super- and subscripts.

2.2. Hierarchical Modelling of Plates and Beams

The fact that a parameter d which is small with respect to the diameter of w suggests
to replace the three-dimensional plate problem by a simpler, two-dimensional plate
model. Since every plate model is only an approximation of the three-dimensional plate
problem our goal is to construct a hierarchy of plate models (of increasing complexity)
that are capable of approximating the solution of the three-dimensional plate problem
for any fixed thickness d arbitrarily closely.

To this end we first introduce the notion of the n-model.

Definition 2.1 Let n = (ni),i = 1, 2, 3 be a vector of nonnegative integers and B(n) =
{b~j} be a (Hooke's) matrix of the type (2.2) which is assumed to be symmetric and
positive definite and in general B(n) # A. Then we denote by 'n(x) the solution of the
n-plate model which is the unique minimizer of g(u) over the subspace 7-(n) C 7-(-QP)

of displacement fields of the form

Ra(x) = ZUij(x1,x2) d (2.20)
j=0

For the beam the definition is analogous.

Existence and uniqueness of the solution of the n-model are proved along the same
lines as for the exact solution. We can once more consider the bounded domain w or
the entire space R 2 for the plate (respectively R' for the beam).

Remark 2.1 The (material) matrix B used in the definition of the n-model may, and.
in fact must be at times different from the matrix A of the plate problem, as we shall
show below.

Remark 2.2 The approximation (2.20) is a classical one. The case n = (1, 1,0) was
used for example in [10], [14], [40], n = (1,1,2) in [171, [491, n = (2,2,2) in [351 and
n = (3,3,2) in [31, 41]. In addition these forms have been used when a relation between
Uj (by differentiation) is imposed a priori, as e.g. in [46]. Many different approaches to
derive the differential equations describing the model were suggested. We refer here for



example to [1, 2, 23, 24, 25, 30, 34, 37, 44]. The form (2.20) was also used in conjunction
with various variational principles (direct or complementary) and additional heuristic
ideas to obtain the differential equations describing the model. The exact solution to
the three-dimensional plate problem and the error estimation have not been considered
in these papers.

For the asymptotic error analysis called "justification" of various models we refer
to [11, 12, 14, 15] and for an assessment and classification of various approaches as
well as for additional references, see for example [12], and [7, 8, 33, 34]. The main
question here is the analysis of the difference between the solution of the model and
three dimensional solution as d -- 0. In these papers mainly the two sided estimates
based on direct and complementary variational principles are used.

In the papers [9, 10, 16, 23, 24, 25, 30, 35, 36, 39, 49, 50] the form (2.20) is also
suggested for laminated plates. In this context the following question arises:

Is the form (2.20) a heuristic one or can it be rigorously justified?

In the case of homogenous, isotropic material it was shown in [45] that (2.20) is not
optimal for d > 0 and that a smaller error with respect to the three dimensional
solution can be obtained with a model of the same complexity. Nevertheless, (2.20) is
asymptotically optimal as d --+ 0. For laminated plates, however, (2.20) is neither for
d > 0 nor in any asymptotic sense optimal. An optimal form exists when the shape
functions in x3 belong to the kernel of a differential operator intrinsic to the problem.
as has been shown in [47], [48]. For a concrete example of the hierarchical modelling
of laminated plates along these lines we refer to [6].

Our approach uses the minimization of the total energy, i.e. the approximate solu-
tion is a projection. The merit of this method lies in that it can be very naturally and
efficiently implemented within the frame work of the h-p version of the finite element
method which is available in the code MSC/PROBE. Hence the hierarchical modelling
has to be understood as a numerical method for the solution of the original 3 dimen-
sional problem with its singularities and boundary layers. The a-priori and a-posteriori
error estimation as well as the adaptive model selection are essential here.

Since we consider only the problem of pure bending, the exact solution uP of the
plate problem satisfies (2.18). Correspondingly, we may set in (2.20)

U ,=(xI,x 2)=0 forjeven,a=1,2, (2.21)
U3..(X,x 2) = 0 forj odd.

Since En(x) is only an approximation to the solution uP(x) of the plate problem,
we will judge the accuracy of the n-model by the relative error in a quantity of interest
when a load q E P is given. Here P is a suitable class of loads which will be specified
later.
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For example, if we are interested in the error in energy, we define

E(d, n, q) (IE( Up ) (2.22)

where £A(uP) resp EB(q1 Pn) is the strain energy of uP respectively of q p'n . Here P'
could be the class of loads with compact support which satisfy (2.9). Then (2.22) is
obviously well defined for any q E P.

Alternatively to (2.22), we can also consider the measure

E(d,n, q) - (IA(P ) A(up) 112(2.23)EA a(Up) (.3

where %hP'n could be a "postprocessed" solution constructed from lhp'n.
For example we may be interested in

~ ) (fR2 (UP3(X 1 , X2 , 0) -Bup~n(x, X2 , 0)) 2 dxidX2 ) 1/2

(fR2 (uP3(xI, X2, 0))2dxidx2)1/2  (2.24)

where the class of loads P is such that for a proper selection of the rigid body motion
the numerator and the denominator are well defined for every q E P. We remark that
the error measure in (2.22) - (2.24) are relative errors. They are naLural in that in their
analysis no assumptions on a scaling of the data q has to be made a priori. We will
show below, however, that the accuracy of the model can be measured by analyzing
only the numerator in (2.22) - (2.24).

Let us now define precisely what we mean by hierarchical models and give the
framework in which we analyze the above error measures.

Definition 2.2 A sequence of n-models is hierarchical with respect to the measure E
and the class P of loads q if

(HI) (asymptotic exactness) for all q E P, E(d, n, q) --- 0 as d -+ 0 for all n.

(H2) if P is such that the exact solution up is sufficiently smooth uniformly with respect
to d then

E(d,n,q) < C(n)d3(n ) , /3(m) >13(n) for mi ni, i = 1,2,3.

The exponent /3(n) will be called rate of convergence.

([13) For any q E P and any fixed d > 0 there holds E(d,n,q) -+ 0 as min{n,} cc.
1<i<3.



9

(H4) The plate model is mo-iotonically hierarchical if for sufficiently largC n and ni >
ni, i = 1,2, 3, E(d, m, q) < E(d, n, q).

For the beam problem the definition is analogous.

Remark 2.3 It is clear that in our approach not only the solution of the plate models.
but also the modeling itself (i.e. the selection of a particular model from the hierarchy)
could be done numerically. This is in contrast to the approaches proposed in the
references in Remark 2.2.

The following Theorem establishes the important properties (H3) and (H4) for our
hierarchical models.

Theorem M.1 Let the n-model be as in Definition 2.1 with B(n) = A for all n. Then
for the measures (2.22) or (2.23) and for -tfP', =Aupn the conditions (H3) and (H4)
hold.

Proof: Vp,'n is merely the energy projection of up onto 1H(n). This ir. plies (H4) for
(2.21). The density of the polynomials in Hk(-d,d), k = 1,2 ylelds (H3) for (2.22).
Reali7ing that for V .n =Au p,n ' we have IpA(4LP'n)--A(uP) = £A(apvn -uP), and (H3)
and (114) for the measure (2.23) follow. 0

Remark 2.4 It is essential here that we formulate our models as energy projections
and not in the form of asymptotic expansions which cease to make any sense if the
three dimensional solution is not smooth. This, however, happens frequently because
of the corners and edges that are typically present and because of the boundary layers
in the three dimensional solution. In this situation many models as e.g. some of those
in [2] are not usable.

We emphasize here that the hierarchical approach allows to employ simultaneously
models of different order n from the hierarchy in different parts of the plate. In par-
ticular in a neighborhood of the boundary of w higher order models (in our sense) are
essential, because among other things boundary layers are different for different models.
see e.g. [4], [5].

Theorem 2.1 insures the desirable properties (H3) and (114) for the n-models and
the measures (2.22), (2.23). Obviously these properties hold only for large n and the
proof sheds no light on the properties of the n-models for small n and d. In practice.
however, we are especially interested in these lowest members of the hierarchy. These
are in view of (2.20), (2.21) the (1, 1,0)-, (1, 1,2)- and the (3,3,2)-model, respectively.
In the following sections we therefore analyze these models in detail and show that they
can be optimized in some sense.
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3. Fourier Transform Solution of the Plate and Beam Problem
and Their n-Models

3.1. The Fourier Transform of the Plate and Beam Problem

In Section 2 we defined the plate problem for w = R2 and the beam problem for w = R1
as well as the corresponding a-periodic problems.

In this section we will further elaborate on these two problems using the Fourier
transformation as the main tool. Because we have to deal with functions which are
not integrable we will employ the theory of Fourier transform of generalized functions
(tempered distributions), see for example [18].

For any integrable function q(x), x E R n we denote by

= IR-q(x)e'dx E R"n (3.1)

the Fourier transform of q(x). Then q(x) is defined by the inverse formula

q(x) = (27r)- J ()e- d . (3.2)

If q(x) E L2 (R n ) then () E L 2(R) and Parseval's formula

JR fl =Pr)-J R n ' (3.3)

holds.

If q(x) is an a = 2r 2 r periodic function and

q(x) = (2-)-" E cmei* [ml (3.4)

where [m31] = (mnj/l,m 2 32,. O. ), m = (mI,m 2 ,.. .,m), mi an integer, then in
the sense of generalized functions

4W= cm6( + [m]) (3.5)

where b(e) is the Dirac distribution.
The inverse transformation is then given by formula (3.4) and for any r(x)

(27r) - 2
m dmeiz [m'] Parseval's formula reads

o dx = (2r)-m(, E (3.6)JO<Z2cm/ dm .
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If q(x) E L 2(R2 ) and has compact support then 4( ) has all derivatives in a neigh-
bourhood of = 0 and the condition (2.9) reads

4(0) = -i(0)= 0 i= 1,2. (3.7)

For the periodic problem condition (2.9) yields

4(0) = co = 0. (3.8)

Analogous results hold for the beam-problem.
In what follows we denote by Ol'(6,6 2, x3), i = 1, 2, 3, the partial Fourier transforms

of the displacement components with respect to (x1, x 2) and in the case of a beam we
will write analogously X 3 ), with i = 1, 3.

Now using Parseval's formula we have

Theorem 3.1 Let uP(x) resp ub(x) have finite strain energy. Then for the plate
=j e TAedx (3.9)

00

E IVU,12 + U1 d
2(1 + V) JR2X(-d,d) 12V

(2r)-22(1 + v) JR2x(_d,d) iI + )

1 - dl d d +  i& + ft' 12 dd 3 .

-2v 3 + +d

Here 1=2 62 + ' and the prime indicates d .Further, for the beam

'(u') = (27r)-'2( E u)(111 + 1'&3 12

~~l~ub) ~ = 2.~2(1 + v) fR1 x (-d,d){ lI2 u
1}

+fI~I2 + I3I2 + 1 - 2- Ii1il ± t 1 d~ldX3. (3.10)

For the periodic case when writing

, {C")(X 3) (3.11)

we get for the plate

u )Ix<a } (-d) e Aedx 
(3.12)

E (2)2d Y(3
2(1 + f)(27r- Z j- (ImI2Ic )12 + Ic(Q1' 12)2 + m +cd

'1 -2P
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where m = (MI, m 2). For the beam we get analogously

E(u = (21r)-' 2(1 ) m (c$, 12 + ICm()l2)2(1 + d) d M

Ic$Q'12 + IC(3)I2 + I imc (3+-11-

1 -2 M + cmI}X

where m is an integer.

Proof: The proof is straightforward. We note that all terms are square integrable
because we assumed that the strain energy is finite. C

Let us also note that if the strain energy is finite then u is not necessarily square
integrable on R2 x (-d,d) not only for the possible presence of rigid body motions.
Nevertheless all terms in the expressions for the strain energy are integrable.

Theorem 3.1 allows us to find the solution of the 3-dimensional formulation as well
as that of any n-model explicitly in Fourier-transformed form.

Using the Fourier transformation of generalized functions, we now write down so-
lution formulas for the beam and plate problems on the unbounded domain Q,,.. \Ve
start with the beam problem where E R 1 because, as will be seen ;n Theorem 3.3,
the beam solution yields immediately the plate solution. It is not hard to prove:

Theorem 3.2

1. Let q(xi) E L 2(R') have compact support and assume that

q(x)dx = J xq(x)dx = 0.

Then the Fourier transform of the beam solution ub = (ut, ub) introduced in Sec-
tion 2 is

=j [ f~~, 3 ] [ 41(~X3) E R 1 (3.13)
3 ~(X3) J=IX3~x)J

where

,3= sinh( 3 ) [(V- ) s + 4b] - cosh( X3 )a} (3.14)

X( , X3) = cosh(VX3 ) [(1 - v)+ 1b] 11 .sinh( x3)a}

with
a(, d) - cosh(ed)

cosh( d) sinh( d) - d

and

b(, d) = sinh( d)
cosh( d) sinh( d) - d"
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The solution is unique modulo the space of rigid body motions I/b which, under
Fourier transformation, becomes with the constraint (2.8)

= i= ( (l,x 3 ),l 3(6i,X3 )) I ftS(6,X3) =

.0, RI }f13(6,,X3) =-ai --6 + bb( ,), a,b ER

where 6( ,) is the Dirac distribution (in J.

2. Let q(x) = eiX1CO, 'o E R', o # 0. Then the 2r~jo-periodic solution of the beam
problem is

b [Ub(XI, X3) ] r0of( O, X3 )]eZo,(.)= u1(X ,X3) = X(6),x3) 6
and it is unique up to the rigid body motions

XPER = {(U 1,U3 ) I U1 = 0,U 3 = a,a E R1}.

Remark 3.1 In the special case of periodic solutions considered in Theorem 3.1 we
did not write the solution ub in its Fourier transformed form. Using the Fourier trans-
formation, (3.15) can also be written in the form (3.13) with

4( ) = 27rb( + 'o).

Remark 3.2 The distributions fll, ui3 are in general not integrable since they have
a singularity at the origin. Nevertheless it is easy to see that their strain energy in
Theorem 3.1 is finite and hence the solution expressed by (3.13) is the Fourier transform
of the unique (up to rigid body motions) solution introduced in Section 2. For more
details see [45].

Remark 3.3 In Theorem 3.2 we have assumed a very special periodic load q. It is
clear that we could represent a general periodic load by superposition.

So far we have dealt only with the beam problem. Now we will show that the
Fourier solution formulas for the beam and plate problems are essentially the same.
More precisely, we have

Theorem 3.3

1. Let q(xl,x 2) E L 2(R 2) have compact support and satisfy (2.9). Then the Fourier
transformation of the solution uP of the plate problem is

'(,, i2,,,2) X1k(I1,X3) (3.16)
x(l I, X3)



1-1

where g, x are as in Theorem 3.2 and the space of rigid body motions is now
given by

U = {U = (6,, X3), U2(6,6,X), U3(6,, X3))

Ul=ClX 38
6 ,c 6), U2 = C2zr36(61, 6), U3 = bb( ,6) -l cii -4 21

2. For q(x) = ei(12',o+GX22.o), 6,o # 0, 6,o # 0 we have
Ub(1 x V,(( 2'0 + ,o) 1/2,))

X3) 1 20 1 X3)
ub b ~~, 2 sI ' (,o4'((, + 20 )1/2 ,x) I i(X1I ,O+X2C2,O)

b( , X3) i X((2',o + ,o)1/2, X3))

(3.17)
and

= {U( 1 , 6, X3 ) = (Ul, U2 , U3 ) I l= 0, U2 = 0, U3 =a, a E R'}

Proof: First we observe that the functions ?P and X given in (3.14) are even in and
hence the expressions O(IC1, x3), X(I I, x 3 ) have a natural meaning. Let us now consider
the expression for the strain energy of the plate given in (3.9). Upon the substitution

fL 1 -
f1(6, 2,X) =VrT 6,,X,3)

we get

EA(u) = (27r)-2(1 + v) JR2>(-dd) I~l2(!o~I2 + 1VI1) + Iz i1 + l jl

1 21 -2v Ii o + vgl2 d 1dsdx3
(2) E fOx an (121 + I "1 )l<)dX~d3"

2(1 + v) JR2x(-d,d) 
2

Comparing this with (3.10) and since ga(u) is given by (2.6), we get v,2 = 0 and obtain
from Theorem 3.2

l (6,6,X3) = 4(6,6) W(1 11,X)
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Hence we have [U] v' C 2 ]1

and this implies the statement of the theorem.
In the case of the periodic problem, i.e. for a load of the form g = e(zIl+2 2), we

utilize the fact that 4 is the Dirac distribution. 0

In what follows we will assume that fjb and fiP are given by (3.13), (3.14), (3.15),
(3.16), (3.17), i.e. we are fixing the rigid body motion.

3.2. The Fourier Transformation of the Solution of n-models

As we pointed out in Section 2, our main interest will focus on the lowest models of
the hierarchy. Because the same relation between the Fourier transformation of the
beam and plate problem holds also for the n-models, we will only address in detail the
expression for the beam model.

For the (1, 1, 0) model we use B = B (
-,1

° ) = B(A, pi1 , K) where

A, + 21,1 A, A1  0 0 0
A, A, + 21 A1  0 0 0

B(Al, II, = A1  A1  A1 +2 1  0 0 0
0 0 0 y' 0 0 (3.1S)
0 0 0 0 KILI 0
0 0 0 0 0 Kll

with (see (2.2), (2.4))

A, El El3.9
A1 = (1 + v,)(1 -2v,)' I' - 2(1 +v,) (3.19)

v E(1 + 2v)V +V El (I+-) (3.20)v 1 - 1+v' (l+v) 2

and Kc > 0 is arbitrary.
For the n-models n = (ni, n 2, n3 ) with n > 1, n 2 > 1, n3 > 2 we use B n = B(,\, p. K)

where A, p are given by (2.4) and K > 0 is again a free parameter, the so-called shear
correction factor. Now we have the following representations of the solution.

Theorem 3.4 For every n and B n as defined above, there exist functions

so that the solution Bun of the n-model admits the representation (3.16),(3.17). In
particular, we have
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1 . f o r th e ( 1 , 0 ) m o d e lX 3 i I - v X 3( . 2

=n X( 0 3 1 {c31 V + d2 } (3.23)

2. for the (1, 2) model

(,( 2 )(~ X3 ) = 3i 30(1_-v) ± &k1 2(K - lOu- 2Kv) X1 (.4
4Gd3  (30 + tPK(1 - V)1412)1~4

BX(1,2)(4,3 30tc(1 - V) + d~2142(20 + k 2 - 5Kv - 2 I 2 V) - d 4 1C( _ v)k1 41
Xl 2) X3) -4Gd

3  Kc(30 + d2 Kc(1 - v)1k1 2)1k14

+X2 15 3v +d2(v -1) I 2 (325
+3 4Gdi3 K(v - 1)d2I I4 - 301k1 2' (.5

3. for the (3,2) model, as 1 --* 0,

- 3i 1(1-v _(2 +3Kv)& ~ 2 - Ku 3  ) (.6y .X 3) =- 4G4 10K 2  X3 - 6k 2 x3 ±+O(d)j(.6

11(3=) 4 3 t4 1K12r- v +(8 -3Kv)& +(I1-vd2v 2

d4 v)(21KI2 (I - 2v) + (2 - KyV) 2 ) + O(d 3 2),3.7
d4 (1 - 5250 2 (l - 2v) }(.7

and, as co-~0,

IX(3,2)('X3)1 5 112 (3.28)

Proof: The formulas (3.22)-(3.28) are derived exactly in the same way as the formulae
(3.14), (3.15).0

Let us remark at this point that the functions 4' and X are meromorphic in in a
neighborhood of = 0.

The main idea is now to analyze the error of the n-model in the Fourier transform
variables. We note that the matrix Bn is defined differently for n3 = 0 and n3 > 2.
In both cases we included the shear factor K and will analyze its optimal value which
leads to the minimal error when the solution of the n-model is compared with the three-
dimensional solution. We could also determine all the coefficients in Bn by the same
principle. This, however, will lead, for the materials considered here, to our matrices
B with K being the only free parameter.
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Remark 3.4 The introduction of the shear factor is a very old idea. It was introduced
for the dynamic plate problem as well as for the static one. In [2, 40, 46] the shear
factor K = 5/6 is recommended. In [21, 32, 511 a value for the shear factor is obtained
so that the velocity of short surface waves is modelled accurately. In [13, 16] the shear
factor is designed so that an accurate solution will be obtained for a cantilever beam
with a given cross section. Various other shear factors were suggested for laminated
plates, e.g. [10, 35, 49, 50]. In [36], an adaptive construction for the shear factor is
proposed. All these suggestions are ad hoc. For the (1, 1,0) model [28, 29, 38] analyze
the optimal selection of the shear factor in connection with nonhomogenous lateral
boundary conditions and q = 0 (the so-called Saint-Venant problem for plates) and
show that for a particular value of Kc the energy error is asymptotically of higher order.

In contrast to these derivations we will present in the next section an approach
which leads to uniquely determined special values of the shear factor which in turn
give a higher asymptotic rate of convergence for the data of intent in the plate bending
problem.

4. Error Analysis and Optimal Shear Factors for the Hierar-
chical Models

The Fourier transformation allows us to analyze the performance of the n-models with
respect to various measures of interest. In this section we will address some of them.

4.1. The Load Spaces and the Basic Performance Measures'-

In Section 2.2 we have introduced the accuracy measure relatively to a set of loads -P.
Let us now define a specific set P = B1, of loads g(XI,x 2) for the plate problem and
g(x 1 ) for the beam problem. Let for t > 1, 1 > 0 integers and s E R',

- {q I q(x) - 0, for jxj > K, J( + 1I12)s14()1 2d < 1,
(D'4)(0) =0, a = (al,a 2 ), 0 < al,a 2 integers CQ + a 2 = jai al < t,

1141<1 1 1-2+2tj-'l1q12d = Aj > 0,j = 0,1,. .. , /}.

We note that from the basic properties of the Fourier transformation of distributions
with compact support we have for ki < 1, Ial _< s that

l(DS4)()j < C(c,s) (/1412(1+ 112)d)' (4.1)

and hence, because t > 1, we obtain
fl 1 1l~-2(t+1)jqj2d < 00.



The space B', is a space of generalized functions (distributions), based on which we
introduce now the basic performance measures E corresponding to the data of interest
Q. Obviously we could introduce many others. We have

a) The energy error performance measure.

EE (B, n, q) = -fR(xI fRX(, d)) .. B lk, d))12d/ (4.2)

b) The midsurface deflection measure.

fR2 IX( 1I,0) BXn(I IO)I2'14I'dc /
EmID (B, n, q) = IfR -x( -- O) 1/JdJ

2  
.(4.:3)

c) The average deflection measure.

Let
id

f13,AV(' ) f1d ,Xd dX

and

3, 2df d f13( , X3)dX3.

Then

EAV (B, n, q) = IfR2 KXAV(141) BxAV ([.)121j2d (4.4)
IfR2 JXAV(1 1)11fq1d ~ (4.4)

The following theorem shows that in order to analyze the energy performance measure
asymptotically as d --+ 0 we need only consider the numerator of (4.2).

Theorem 4.1 Let q E B,, s > -1/2, 1 > 0, 0 < d < do < 1. Then

R2Cd (4.3)

where C > 0 is independent of d.

Proof: First we observe that it follows from (3.14) that for kijd > 1

I~x(IkJ,d)j 5C (4.6)
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with C, independent of d. Further we have for all kijd < 1

x( , d) = aod 3IJ I4 + R(, d) where IR( , d)l 0 2d-' 1L 2  (4.7)

and C2 is independent of d and a0  0. Now we write

I X(k1, d)1412 g = +'4 1d±I

and consider the three terms separately. Using (4.6) we get for s >- -1/2 that

V{itd>i X(k171 d)I1412d g J5 fld>1 x( 11 d)(1 + 1kI 2)3-(1 + I I2)s1412 d

:5 SUPi~ IX(I ,d)(l + 12)-s1 < C.

Further

fC : IX(kI1, d)Ieqj 2d = aod-3 J kV 4I412d< + JR( , d)I1412 d .

As q E 5, we have

aod-3 4J< 1f14 141 2 d = aod-3 Ao

and

Hence for d < do we get

411= aod-3 (Ao + 0(d2)).

Finally

41:,4d1x(kI1, d)1412g~ = ao - 144 12ck +f( d)I1e 2 d

where
aod-3j41I!IJId<l 1kV 4 141dg = aod 3 Pj p> 0

and

JR( , d)I1412 d Cd-] -~(1 + 1 I2 Y-3(1 + 1kI 2YI,4I2 k

< 0d-1.
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Hence collecting all the terms we get for 0 < d < do

1 R2 X(1ki, d)iqi'd aold-3 (1 + 0(d 2))

which yields (4.5).C

In what follows we will also need the behaviour Of X,XAV for large I.We have

Theorem 4.2

1. For kijd > 1, I A ( ) ! 4 8

IxACO1 :! C(Mf) m > 0 arbitrary. (4.9)

2.F rJj ,XAV( , d) = aod 3 1 4  + R(. d) (4.10)
where

RI Cd-' 1V 2,ao j4 0,
and

x(1kI,0) = iod -3k 1-4 + R, (4.11)
RI Cd'kL 12,o #0: 0.

Proof: (4.9) and (4.11) follow directly from (3.14).
By an easy calculation we obtain from (3.14) also that

XAVG ) I ~ dX( , X3)dX3

1 (3 - 2L/)(1 I 4 d + 4sedel~d (4.12)
G 4 2d(1 - e 4 d) + 16 3d2e 2 td

from which (4.10) and (4.11) follow. C

Now we can prove along the lines of Theorem 4.1 the following result for -k.,. and

X( , 0).
Theorem 4.3 Let g EB 51, 1 >0, s >-2 and 0< d <do < 1. Then

I JXAV ( )12141d Cd-6 , (4.13)

and for every real s we have

where C > 0 is independent of d.
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Theorems 4.1 and 4.3 allow us to analyze only the numerators in (4.2), (4.3) and
(4.4) in order to prove the conditions (HI) and (H2) in Definition 2.2. Since the analysis
of all error measures proceeds along similar lines, we present it here only for (4.2) in

detail and elaborate briefly on (4.3), (4.4). The following theorem shows that the
asymptotic behaviour of the modelling error for the n-model is completely governed by

the behaviour of B d) near = 0, provided the data is sufficiently smooth.

Theorem 4.4 Assume that for JkId < 1 and every integer k > 0

k

x(1kt,d) a 114 +2jd-3+2 + Rk (4.15)
j=O

with
IRkI < Cd- 3+2(k+I)jL- 4+2(k+I) (4.16)

and analogously that

kB~n(ki1,ld) BaP-4+2id -3 +2 + BRn (4.17)
j=0

with
iBR j_ Cd- 3+2(k+1) i 4+2 (k+) (4.1)

In addition assume that for ki~d > 1

1X d '' dj: (4.19)

where C is independent of d. Let further

j* = min{aj #Ban} (4.20)

where the minimum is taken over all nonnegative integers.
Then for q E 13 , s > -1/2, 1 > J" we get that

limEE(B,n,q)d-3=C, 0<C<oo for ¢3=min{s+2,j'}. (4.21)
d-O

Proof: Using Theorem 4.1 we have to prove that

Z = j(x(kIld) -BXn(jIjd))4I'd

= Cd20- 3 (1 + o(1))
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as d --+ 0. To this end we w:ite as in the proof of Theorem 4.1

z = 4 Id>1 + f4 I5I I ld>1 + i41Ik

Now using (4.19) we get for s > -1/2

-x(I BXn([[,d))I4 2d sup C(1 + I2)- sI
41d>1 1,1 d>l !Ffl

< Cd2s+ '.

Further,

LI<<l, Id~l = (aj. -Ban .)d 3 +2j ,A. + R

where R < Cd- 3+ 2 (j +1 l ) and finally

I>IIld~ --- (aj. -Ban )d-3+2j" + R

where JR < Cd- 3+ 2(j ' + I ) and therefore (4.21) is proven. C

Analogously we can prove

Theorem 4.5 Suppose that for XAV([kl), BXnv(.1), x([kI,0) and B-n(1 1 '0,) we have
expansions analogous to (4.15)-(4.18) for I jd < 1 and that for i jd > 1 there holds

XAV(I~l) x(II)- 12 (4.22)

J'(l 1lO) _BXn(l 1lO)j < C1-  (4.23)

Then, if q E B', with s > -2 and I > 2j* - 2, we have

lim EAV(B, n, q)d- = C 0 <C <00, with 3 = min{s + 4,2j}. (4.24)d-*

Here j* is defined as in (4.20). For the error measure EMID defined in (4.3) the same
bound as in (4.24) holds.

The proof Theorem 4.5 is analogous to that of Theorem 4.4 and uses Theorem 4.2.
From Theorems 4.4 and 4.5 we see in particular that the n-model is asymptotically

exact only if j* > 1.
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4.2. Asymptotic Analysis for n-Models

We shall now apply theorems 4.3 and 4.4 to the analysis of the n-models and, in
particular, to the determination of the optimal shear correction factors 1.

4.2.1. The Reissner - Mindlin - (1,1,0) Model

We have from Theorem 3.2 that for ]k]d < 1

I (3(1 - v) 3vx2 3(8 - 3)(4.25)
4G 1140d3  21I 2d3 + 10112d
(157v - 227)d4 + (1050 - 630v)d2X2 - 175(1 + )x O(d3 1 3 )

(1 7 2 ) 4 + 14000d 3  +v0 dx3 1)

and

XAV00 =) 1 (3 (1 - ) 12-7 + 11d(5 ) + 0(d3  ) (4.26)

On the other hand using Theorem 3.4, we get for n = (1, 1,0)

1 { 3(1 -) 2(,,)llx)= - KVI d-Kj (4.2_7)

By (4.7) and (4.27) we see that (4.19) is satisfied and furthermore, comparing (4.27)
with and (4.25), we find for the measure EE that:
If q E B, for I > 1 and s > -1/2 then

minj2, s + 2 if c opt - 6(1-) (4.2)
B = 1 if tc teP - (.2S

For the measure EMID we obtain with Theorem 4.5 in the same fashion:
IfqE3, forl>2ands>-2 then

( min{4, s + 4} if K = Kopt - 3v) (4.29)
= 9= 2 if / 5 3P2

For the measure EAr we get:
IfgEB,,, 1>2ands>-2, then

min{4, s + 4} if K = Kopt - 12-7L/ (4.30)
1= 2 if K 5 ,
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Let us comment on these results. We see that the optimal value of tc depend3 on
the goal of the plate modelling. For v = 0 we get in all cases that Kop, = 5/6 i.e.
the classical value proposed for example in [2, 40, 46]. Secondly, for data q which is
not sufficiently smooth (or equivalently, for the case when the solution of the three-
dimensional problem lacks regularity), i.e. when s is small, nothing can be gained by
the above choices of K. We will analyze this case seperately below. Finally we remark
that for the choice B = A the (1, 1,0) model is not asymptotically exact, i.e. the use of
the modified material matrix B {11'0') in (3.18) is necessary for the asympt -tic exactness
of the (1, 1,0) model.

4.2.2. The (1, 1,2) Model

From (3.26), (3.27) and (4.26) we find estimates which are identical to (4.2S)-(4.30)
provided that the optimal shear correction factor is given by

12- 2v-1 1 + (12 2v)2 v #0. (4.31)

We point out that unlike for the (1,1,0)-model here Kopt is the same for all three
accuracy measures used. In Table 1 we report the optimal shear correction factor for
various values of v.

Table 1 The values of cpt for the (1, 1,2) model.

V Kopt

0 5/6
0.25 0.867
0.30 0.874
0.40 0.887

0.50 0.899

For other values of the Poisson ratio v it could be easily computed from (4.31).

Remark 4.1 For K = 1 the measure EE is also the relative error in the energy norm.
For K 34 1 the error in the energy norm has to be computed separately and we shall
not elaborate on it here.

4.2.3. The (3,3,2) Model

Reasoning as for the (1, 1, 2) model we obtain now that
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For the error measure EE: If q E 8' with s > -1/2 and I > 2, then

min{2, s+2} ifK= opt (4.32)/3= 1 if r, € Kopt

For the error measures EAV and EMID we find: If q E B"3 , with s > -2 and > 2, then

ra inj4, s + 41 if r. = tcp, = 1,
/3= 2 if K 54 tcp'

Consequently, for sufficiently smooth loads q, the introduction of shear correction
factors x # 1 into the n-models with n > (3, 3, 2) componentwise will always decrease
the rate of convergence and hence the choice B n = A is optimal in these cases. We
further see that the rate of convergence /3 achieved by the (3, 3, 2) model is the same
as for the (1, 1,0) model with Kopt. For sufficiently large s we get a higher rate of
convergence only by using the (3,3,4) model. Then we can replace 2 and 4 in the
expressions for 3 by 3 and 6, respectively (see [45]).

4.3. The Error Analysis for Unsmooth Loads

In the previous sections we analyzed the behaviour of the plate modelling error as
d -f 0 for a class of loads q. We have seen that the accuracy of the n model was in this
case governed by the behaviour of the functions V and V for small .

Furthermore, the smoothness of the load q in the class Bt*, was characterized by the
parameter s which in turn characterized the decay of 141 as ill -* 00. In the proof of
Theorem 4.3 and Theorem 4.5 the minimal allowable s was governed by the decay of
(x -Bxn)(s) for large . Therefore we could be interested in the selection of the shear
correction factor, for which this decay will be maximal.

Theorem 4.6 Consider the (1, 1,0) model. Then we have for 1 Id > 1 that

BfnoC r 2 Kopt  (4.33)XAV ( AV \) , -1d- fo 3- 2v
d) < C02d r2 : t c p, (4.34)

dIj 2j < I"'AV'(' " AVWI 'f

where C, C1, C2 are positive constants which are independent of d.

Proof: Using (4.12) and (4.27), it is easy to show that there exist C1, C2 > 0 so that

1_ ' 3-2v ) 1____ 1
jXAV() 29- K 2dI kd
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from which (4.33) and (4.34) follow. 0

This theorem can now be used to obtain optimal shear correction factors for the
error measure EAy and certain classes of data q. To this end let us assume that the
thickness d is fixed. Then, based on Theorem 4.6 we can construct a sequence of icads
qk, k = 1, 2, ... , so that

IR IXAVI 'qk!d <

J )I kI -+oo as

withqkEB', where l > 0 and -4 < s < -2 and for which

2
EAv(B,n, qk) -- O for o = op, = 3-2v'

and
EAv(B,n,qk) /- 0 for K #K opt.

In Table 2 we show the values Kopt from (4.30) for "smooth" q and (4.33) for "un-
smooth" q for the (1, 1,0) - model and the error measure EAy.

Table 2 Comparison of 'zot of (4.30) and (4.33) for EAr and the (1, 1,0)-model.

V (4.30) (4.33)

0 0.83 0.67
0.25 0.98 0.80
0.30 1.01 0.83
0.40 1.09 0.91
0.50 1.13 1.00

Table 2 shows that in the case of average displacement we take for less smooth q the
smaller shear factor. We emphasize that this conclusion is valid only for the average
normal deflection measure EAV.

Remark 4.2 We point out that for the measures EMID and EE the optimal shear
correction factors ,Kk for the above sequence of loads must become large and positive
as /c -+ c. This follows from a comparison of (4.27) and (3.14).

In section 3 we have introduced the periodic solution with the load q = e =
(x 1 , X2 ). In this case the solutions of the three dimensional problem and the n-model
have the same form in (x1 , X2). Consequently, we can easily compute the shear factor
,K as a function of Jkold which yields the same result for the exact and n-model solution
for the given quantity of interest, for example for the measure EAV,. The graphs of the
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Figure 1: Optimal shear correction factors for the (1,1,0) model (top) and the (1,1,2)
model (bottom) with periodic loads as functions of J~ojd.
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optimal shear correction factors for the (1, 1,0) and (1, 1, 2) model are given in Figure

1. We note that in the limit I ojd --+ 0 we obtain Kopt from (4.30), while for [ o[d -+ o0

we get K0pt from (4.33).

In summary, we saw in this section that the shear correction factor for any n-model

can be uniquely determined by some optimality requirement and we have analyzed some

of the possible choices for this requirement. We found that above a certain threshold of

the model order, the introduction of a shear correction factor into the plate model does

not improve the asymptotic rate of convergence. For the homogeneous and isotropic

materials considered here only the (1, 1,0) and the (1, 1,2) models can be improved by

a judicious choice of ic. In addition, the optimal shear correction factors also depend

on the regularity of the three-dimensional solution which is approximated by the plate

model. We point out that many error measures different from the one considered

here could be analyzed in the same fashion. It is interesting to note that for different

goals of the plate modelling as well as for different regularity properties of the three

dimensional solution different shear factors are recommendable. This also suggests that

in the neighborhood of the boundary different shear factors should be used than in the

interior since boundary layers or singularities of the three dimensional solution govern

the quality of the plate model there. We will also see this in the numerical experiments

in the following section.

5. Numerical Experiments

In the previous sections we obtained several optimal optimal values for the shear cor-

rection factor K for the infinite beam and plate problem and for different quantities Q

of interest.
For the problems in applications the domain is bounded. In this case the theoretical

convergence of the various models can be analyzed as in [7] where the model (1, 1,0)

was addressed. Then also the solution is usually not smooth because, for example.

of various boundary layers caused by the incompatibility of the data and the lateral

boundary conditions, see e.g. [4, 5]. Hence we will now investigate the influence of

for the following model problem.

Consider a clamped beam of thickness 2d = 0.2 and length 2 with Youngs modulus

E = 1 and Poisson ratio v = 0.3 as in Figure 2 where the load q(x) is also defined.

Because of the obvious symmetry in the problem we do the computation for the half

beam only. First, as exact solution we will use the numerical solution by the h-p finite

element method obtained with the program MSC/PROBE with high polynomial degree

p = 8 and refined meshes near x, = 0.2, x, = 0.5 and X3 = ±d. The relative error in

the energy norm was less than 10' so that this solution could be considered as the

exact one.
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Figure 2: Scheme of the model problem

Then the n-model of the beam problem leads to a two point boundary value problem

for a system of ordinary differential equations. This boundary value problem was in

turn solved numerically to high accuracy by the method described in [31 and also its

solution could be taken as the exact solution. Hence the difference between the two

solutions is the modelling error as discussed in the previous sections.

Figure 3 shows the pointwise error in the average normal deflection for the (1, 0)-

model. The curves correspond to (from above) K = 1.0, 0.938 (the theoretically optimal

value for the midsurface deflection from (4.29) 0.935, 0.87 (suggested in[131) and C =

5/6 which was suggested ;n [2, 40, 46].

0.10

t0.05 ... ...
0.00 - -

-0.05 (4)- .:4
. (5)-N. - "

-0.10k--- "

-0.15'
0 0.1 0.2 0.3 0.4 0.5

x -X

Figure 3: Pointwise error in the average normal deflection for the (1, 0)-model.

(1) C = 1
(2) K = 0.938 (optimal value (.1.29) for the midfiber)
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(3) K = 0.935 (optimal numerical value)
(4) n = 0.87 (Cowper [13])
(5) K = 5/6 (Reissner [40])

Clearly the results obtained with K = 1 exhibit a large error which could be expected.
Surprisingly, however, the values proposed in [13] and [2, 40, 46] are not leading to
a smaller error, either. On the other hand, the value K = 0.935 which was found
numerically as an optimal value for the given case is very close to the value ,K = 0.93S
which is. according to (4.29), optimal for the midsurface deflection. We point out that
K = 0.935 is not close to the value K = 1.01 in (4.30) respectively ,. = 0.83 in (4.33).
The optimal value is obviously in between. This effect is caused by the fact that the
solution in not smooth uniformly through the beam. Consequently, (4.33) suggests
the value x = 0.833 near x, = 0.5 and by (4.30) K = 1.01 elsewhere. Because of the
boundary layer we select therefore

K(x) = 1.01 + (0.833 - 1.01)e -
0( _ 05)2 . (5.1)

In Figure 4 we show the error of the (1,0)-model for the average (through the thickness)
normal deflection for the numerically optimal value K = 0.93 and for K(x) given by (5.1).

0.03

0.02

0.01

0

-0.011: .

0 0.1 0.2 0.3 0.4 0.5
- X.._...

Figure 4: Pointwise error in the average normal deflection for the (1.0)-model.

(1) ,K = 0.935 (optimal numerical value)
(2) K = K(Z) as in (5.1)

We see that this x-dependent shear factor performs as well as the best constant value
for K.
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So far we addressed the (1,0)-model. In Figure 5 we show analogous results for
the (1,2)-model. We depict the error in the average normal deflection for the constant
shear correction factors tc = 1.0, te = 0.874 from (4.31) and for the variable tc

t(x) = 0.874 + (0.833 - 0.874)e -70(x - ° .5) (5.2)

with the value r, = 0.833 for the nonsmooth solution (see Figure 1). We see once more
the same effect as for the (1, 0)-model.

0.18

0.14

0.10

0.06""

0.0 -(2) __ _ _ _ _ _ _ _

-0.02
0 0.1 0.2 0.3 0.4 0.5

- X -----

Figure 5: Pointwise error in the average normal deflection for the (1,2)-model.

(1) K =1
(2) P = 0.874 (optimal value (4.31))
(3) Pc = ic(x) (variable correction factor as in (5.2))

Remark 5.1 In practice we would select the shear factor piecewise constant over the
finite elements used to solve the beam/ plate problem approximately rather than a
function which depends smoothly on x.

Finally we show in Figure 6 that the value of top, given by (4.31) which is the same
for all criteria used is also in practice (i.e. for the bounded domain) very good for
various accuracy measures.
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Fig ..e 6: Error in various quantities in dependence on K for the (1,2) model.

(I) u3 ' )(0, 0) - U3(0, 0)

(2) Error in the average normal deflection at x, = 0

(3) u(I ")(0, 0.4) - U3,(0, 0.4)
(4) Energy of the (1,2) model - energy of the exact solution

6. Conclusion

We have presented the concept of hierarchical modelling as a numerical method for
the approximation of a three dimensional elasticity problem on a "thin" domain. This
method can be easily implemented in the context of the h-p version of the finite element
method (which is available in the code MSC/PROBE). The selection of the shear
correction factors was then based on an optimization of this method. The approach
that we have presented suggests concrete values for the shear correction factors, and we
found that the optimal choice depends on the aims of computation. We point out that
the optimal shear correction factors for the error measures considered here are identical
for the (1, 1,2) model. In contrast, for the Reissner Mindlin (1, 1,0) model, the optimal
shear correction factors strongly depend on the error measures used. We further showed
that the optimal shear correction factor should also depend on the smoothness of the
solution and consequently have different values in the interior and in a vicinity of the
boundary of the plate.

In this context we also remark that the Reissner Mindlin and the (1, 1,2) model have
quite a different boundary layer behaviour on bounded domains [41,[51. It is possible to
use different models from the hierarchy simultaneously in different parts of the plate,
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for example, in a neighborhood of the boundary the (1, 1,2) or a higher order model,
while in the interior the (1, 1,0) model with the proper shear correction factor could
be used.

Although we presented here only an analysis of the isotropic case, we emphasize that
our approach can also be utilized for anisotropic and laminated materials (where the
approximation (2.20) will not be polynomial in X3 any more) as well as for the analysis
of problems other than the classical plate bending problem, and these generalizations
will be the subject of a forthcoming paper.
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